Course: EN-4151 APPLIED NAVAL ARCHITECTURE

Credits: 3 Semester Spring 2025

Professor: LCDR Trudeau Office: Room 216A Harrington

Text: Ship Construction by DJ Eyres 7th Edition

Prerequisite: EN 3112 – Strength of Materials

Student Hours:

Rm 216A Harrington, 1**200-1300**, or email me,or stop by anytime. Office phone: 508-830-5279 **Email: dtrudeau@maritime.edu**

Grading: This course is an STCW knowledge-based assessment course requiring a minimum grade of C-, or 70%, for the semester grade. In accordance with the Engineering Department STCW grading policy, a *grade lower than 70% receives an F for the course.*

The semester grade will be assigned as follows:

Quizzes & Homework (60%), Mid Term Exam (20%), Final Exam (20%)

Attendance:

Attendance is mandatory for all class lectures. Special liberties **<u>DO NOT COUNT</u>** as an excused absence. Only the Dean can issue an excused absence.

Students with perfect attendance will have their lowest quiz grade dropped.

There will be NO make-up quizzes offered even with an excused absence and NO QUIZZES WILL BE DROPPED. Missing a quiz equals zero.

Students will be allowed two absences from <u>class lectures only</u>. After that 2 points will be deducted from final grade for each absence. Students will have to make-up all required work. If a student misses more than five (5) class he or she will fail the class.

Notes

- 1. Our disability resource contact is Dr. Elaine Craghead, ABS bldg., rm 320. She may be reached at 508-830-5120 or <u>ADAcompliance@maritime.edu</u> Students having accommodations need to notify me of them.
- 2. Cadets attending class will be in the correct classroom uniform.
- 3. No food or drink is allowed in the classroom
- 4. Bathroom breaks only in extreme emergency

2Learning Outcomes:

Upon completion of this course, it is expected the Student:

- 1. Will be able to calculate, or estimate, the area and volume of tanks and other ship shapes.
- 2. Will have a general knowledge of the principal structural members of a ship.
- 3. Will be able to explain why a ship floats.
- 4. Will be able to draw a diagram showing the key parameters involved with measuring a ship's stability.
- 5. Will be able to explain the effect of load changes on stability.
- 6. Will be able to use a ship's hydrostatic curves-of-form to obtain displacement and other initial stability information.
- 7. Can clearly explain how the ship's center of gravity changes when moving weights.
- 8. Can clearly explain the effect of free surface and be able to calculate the free surface correction if given a ship's loading condition.
- 9. Will have a working knowledge of the causes and effects of stress on a ship's hull.
- 10. Will understand what structural hull loads are, and, be able to calculate basic longitudinal hull stress for a simplified loading.
- 11. Will understand the importance of maintaining watertight integrity.
- 12. Will be able to estimate a ship's power requirement given speed and resistance data.

STCW Learning Objectives

Demonstrate knowledge and understanding of the following STCW elements:

- OICEW-D2.1 Stability, trim and longitudinal stress
- OICEW-D2.2 The fundamentals of watertight integrity
- <u>OICEW-D2.3</u> The fundamental actions to be taken in the event of partial loss of intact buoyancy
- <u>OICEW-D2.4</u> General knowledge of the principal structural members of a ship and the proper names for the various parts
- <u>OICEW-C.1.1</u> Characteristics and limitations of materials used in construction and repair of ships and equipment

APPLIED NAVAL ARCHITECTURE - Spring 2025 - SYLLABUS

DATE	TOPIC	
Lesson #		
Lesson #1	Administrative issues. Nomenclature, Finding Areas	HO #1 Basic
	HW Find Area under curve	Measurements
Lesson #2	More nomenclature, dimensions, finding Area, finding	HO #2A Prop of water
	Center of area. HW Find Vol of liquid in tank	HO #2B Find Area and
		center
Lesson #3	Relationships: Underwater volume, weight, specific	HO #3A Underwater
	weight	Volume
	Sectional area & volume, calculating the weight of a	HO #3B Calc barge
	barge	weight
Lesson #4	Weight down, buoyant force up,	HO #4A Underwater
	center of buoyancy, center of gravity,	Vol
Lesson #5	Combined center of gravity, Volumes,	HO #5A Combined c.g
	Archimedes Principle	HO #5B Structural
	HW Find combined center of gravity for fuel tanks	parts

	Forces are transmitted through the ship's structure.	HO #6A Area Moment
Lesson #6	Area-Moments-of-Inertia, parallel axis theorem	
Lesson #7	Graded Assignment #1 is going out.	HO –Graded
	Find the Volume and Center of Gravity	assignment #1
Lesson #8	Area moment of inertia for a composite piece.	HO #8A Area Moment
	Hull pressure forces, more parallel axis theorem	HO #8B Pressure
		forces

Lesson #9	Metacenter, metacentric height, righting arm, righting moment	HO #9A Reserve Buoy Metacenter 2 pg HO #9B Righting arm HO #9C Stability
Lesson #10	Positive and negative stability Pg 31 Text, Angle of Loll, Transverse shifting of weight already onboard	HO #10A Positive stability HO #10B Shifting a weight
Lesson #11	Stability triangle, list triangle, Why does a ship float? Intro to the Trim & Stability Booklet	HO #11A Stability triangle HO #11B List triangle HO #11C Tank capacity HO #11D Kennedy Hydro

Lesson #12	Classroom – example problems	NO Handouts
Lesson #13	Intro to Ship's Trim & Stability Booklet	HO #13A Adding a wt
	Adding a weight, calculating angle of list, start Free	HO #13B Free surface
	Surface	
	HW Taking moments about an axis	
Lesson #14	Free Surface formula, introducing the virtual center of	HO #14A Virtual c.g.
	gravity HW Weight addition	2 pgs

MONDAY 9 OCT is a HOLIDAY – Columbus Day

Lesson #15	A DEAN'S MONDAY	HO #15B Develop
	Developing the Free Surface Correction formula	FSC formula
	Calculating a tank's Free Surface Correction (FSC),	HO #15C Class example
		problem
Lesson #16	Calculating a SHIP'S total Free Surface Correction for	HO #16A Noon report
	ALL tanks. Noon Report, Trim & Stability summary	2 pgs
	sheet	
Lesson #17	Free Surface example problems	HOs #17A,
		HO #17B FSC prob
		(2 pgs).

	Start: STABILITY at LARGE ANGLES of Heel	Chap 7
Lesson #19	Transverse Stability at large angles of heel,	HO #19A Static
	Static Stability Curve, Assumed KG,	stab. 2 pgs
	Intact Stability Criteria using Righting Arm curves	HO #19B Intact
	HW Static Stability going out – draw corrected curve	Stab criteria
Lesson #20	Application of trim and stability information.	HO #20A Trim &
	Graded Assignment #2 - Trim & Stability calculations	Stability
	Due: Wed 1 NOV, in class	instructions 4 pgs
	Start: LONGITUDINAL HULL STRENGTH	Chap 10
Lesson #21	Some ship structural pieces, hogging, sagging,	HO #21A
	Model the ship as a Box-Beam,	Structural pieces
		HO#21B Hog, sag,
		Box Beam

Lesson #22	Flexure Formula, Video – Why ships sink	HO #22A Flex
		formula(text)
		HO #22B Flex
		formula 2 pgs
Lesson #23	Framing Systems, develop ship strength curves;	HO #23A Framing
	Ship's Weight curve, Buoyancy curve, and Load curve	HO #23B Weight
	Graded assignment #2 is due today.	curve 2 pgs
	Ship Strength curves	HO #24A Wt/ft,
Lesson #24	Develop barge's Weight per foot $W(x)$, $B(x)$, $L(x)$	B(x) 2 pgs
	Shear Force $V(x)$, Bending Moment Curve $M(x)$	HO #24B Shear
		curve, Bending
		moment curve

Mon 6 Nov	More Ship Strength curves, Strength calculations,	HO#25A Five
Lesson #25	Class example problem	strength curves

		HO #25B Class ex.
		problem
Wed 8 Nov	Intro to Section Modulus, Ship construction,	HO #26A Section
Lesson #26	Subdivision and "Tonnage"	Modulus
		HO #26B How
		Modulus is used
		HO #26C Tonnage
FRIDAY	FRIDAY, 10 NOV is a HOLIDAY – VETERAN'S DAY	
10 NOV		

Mon 13 Nov	Understanding fundamental actions to be taken in the event	HO #27A
Lesson #27	of loss of intact stability. Ballast water management	Ballasting
Wed 15 Nov	Review for exam #2	
Fri 17 Nov	EXAM #2 FRIDAY 17 Nov	

Mon 20 Nov	Materials used in construction.
Lesson #28	Graded HW #3 goes out
	GRADED HW #3 is due Fri 1 Dec
	Return exams

TUES, 21 NOV - COMMENCE THANKSGIVING BREAK AFTER LAST CLASS. So, we have no NAV ARCH classes Wed 22 Nov, or Fri 24 Nov.

Mon 27 Nov	RESISTANCE to the SHIP moving through the water	HO #29 Total hull
Lesson #29	Intro to Ship Resistance, 3 types of resistance	resistance
Wed 29 Nov	Towing a model, Effective Horsepower (EHP)	HO #30
Lesson #30	Use of models, Law of Corresponding speeds	Scaling example
	Ship Resistance and Modeling, scale factors	2 pgs
Fri 1 Dec	Explosive limits, Inert Gas systems	HO #31A
Lesson #31	Graded Assignment #3 is due.	Explosive range
		HO #31B
		Inert gas system

Mon 4 Dec	Ship-model power and speed relations	HO #33A
-----------	--------------------------------------	---------

Lesson #33	Hull speed, Power along basic drive train	Hull speed
		HO #33B
		Ship drive 2 pgs
		HO #33C
Wed 6 Dec	Ship's Trim and draft marks. Ship propeller basics.	HO #34A
Lesson #34		Propeller pitch
Fri 8 Dec	Drydocking information	NO HANDOUTS
Lesson #35		

Mon 11 Dec	Review for exam	
Wed 13 Dec	Last DAY OF CLASS.	A 50 – minute
	Exam #3 will be given in class on this day	exam (in class)